Near-Fault Ground Motion Impacts on High-Speed Rail Large-Span Continuous Girder Bridge considering Pile-Soil Interaction

Author:

Zhou Yefei1ORCID,Wang Gang2ORCID,Yang Shuyi2ORCID,Liu Niu2ORCID

Affiliation:

1. The 4th Construction Co., Ltd. of China 15th Corporation, Zhengzhou 450051, China

2. College of Transportation Engineering, Nanjing Tech University, Nanjing 210009, China

Abstract

This paper examines and discusses the dynamic response of a high-speed train-bridge-soil-pile foundation system to near-fault earthquakes. A 72 + 120 + 72 m continuous girder bridge of a high-speed railroad was selected as the model for calculation. Based on the p-y model for simulating pile-soil interaction, the moment-curvature analysis program XTRACT is used to calculate the moment and curvature of bridge piers and pile foundation sections, and the finite element (FE) software is used to establish two nonlinear global bridge models under seismic effects in the high-intensity zone, one considering pile-soil interaction and one without considering pile-soil interaction. The Ap/Vp parameter, the ratio of peak acceleration to peak velocity of transverse ground shaking, is used to reflect the impulse characteristics of earthquakes and the effect of the Ap/Vp parameter on the dynamic response of bridges to earthquakes was studied. The elastic-plastic response of the bridge system was calculated under lateral and vertical near-fault (NF) impulse/NF nonimpulse/far-field (FF) ground motions (GMs). The study shows that the structural displacement increases, and the internal force decreases after considering the pile-soil interaction. The results show that the bridge piers enter the elastoplastic phase under rare earthquakes. The NF ground shaking couples with the bridge into the elastoplastic phase with a more significant impulse period than the FF ground shaking intensifies the dynamic response of the bridge structure.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3