Research on Automatic Classification Method of Ethnic Music Emotion Based on Machine Learning

Author:

Wu Zijin1ORCID

Affiliation:

1. College of Humanities and Management, Guilin Medical University, Guilin 541199, China

Abstract

With the development of the country’s economy, there is a flourishing situation in the field of culture and art. However, the diversification of artistic expressions has not brought development to folk music. On the contrary, it brought a huge impact, and some national music even fell into the dilemma of being lost. This article is mainly aimed at the recognition and classification of folk music emotions and finds the model that can make the classification accuracy rate as high as possible. The classification model used in this article is mainly after determining the use of Support Vector Machine (SVM) classification method, a variety of attempts have been made to feature extraction, and good results have been achieved. Explore the Deep Belief Network (DBN) pretraining and reverse fine-tuning process, using DBN to learn the fusion characteristics of music. According to the abstract characteristics learned by them, the recognition and classification of folk music emotions are carried out. The DBN is improved by adding “Dropout” to each Restricted Boltzmann Machine (RBM) and adjusting the increase standard of weight and bias. The improved network can avoid the overfitting problem and speed up the training of the network. Through experiments, it is found that using the fusion features proposed in this paper, through classification, the classification accuracy has been improved.

Publisher

Hindawi Limited

Subject

General Mathematics

Reference24 articles.

1. Music and emotions: from enchantment to entrainment

2. A comparative study on content-based music genre classification;T. Li

3. Non-Negative Tensor Factorization Applied to Music Genre Classification

4. Audio feature extraction for classification using relative transformation;G. Wen

5. A Survey of Audio-Based Music Classification and Annotation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3