Automatic Detection of Small- and Medium-Sized Targets in High-Resolution Images Based on Computer Vision and Deep Learning Energy

Author:

Lv Yi12ORCID,Yin ZhengBo3ORCID,Yu Zhezhou3ORCID

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, China

2. College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin 130032, China

3. College of Innovation and Entrepreneurship, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China

Abstract

In order to solve the problem that it is difficult for traditional manual feature algorithms to deal with complex image features quickly and automatically in high-resolution images, an automatic detection method for small objects in high-resolution images based on computer vision and deep learning energy is proposed. Starting from the deep learning target detection system, this paper studies many problems in the system according to the characteristics of target spatial deformation, more small targets, easy confusion, and rough regional proposal in high-score remote sensing images. The results showed that a combination of spatial deformation strength with spatial deformation resistance and multiphase coupling were all proposed to be comparable with spatial deformation. The process of tracking international products in the system has been extended to study local channels. Pay attention to the operation of the machine, make full use of rich semantic data of local characteristics and the world of spatial points, which will help to improve the accuracy of the purpose of the chaw, and identify ways to create a shared database. The proposed method is evaluated on three attribute, classification joint datasets; ACCNN on the AC-AID dataset, the performance of ACCNN is suboptimal on AC-AID and is very close to the best method for DCA fusion. The average error rate of DCA fusion is 5.67%; on the AC-UCM dataset, the error rate of ACCNN is 2.11% lower than the suboptimal method DCA fusion, and the error rate of DCA fusion is 6.16%. On the AC-Sydney dataset, the error rate of ACCNN is 1.86% lower than the suboptimal method DCA fusion, and the error rate of DCA fusion is 5.99%, which obtains quite competitive results, experimenting with high-resolution images.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3