Effects of Controlled Irrigation and Drainage on Nitrogen and Phosphorus Concentrations in Paddy Water

Author:

Gao Shi-kai1ORCID,Yu Shuang-en1ORCID,Shao Guang-cheng1,She Dong-li1,Wang Mei1,Guo Rong1ORCID,Cao Rui-zhe1,Yan Shao-feng1,Ding Ji-hui1

Affiliation:

1. Key Laboratory of Efficient Irrigation-Drainage and Agricultural Soil-Water Environment in Southern China, Ministry of Education, College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

Abstract

Controlled irrigation and drainage (CID) has received attention for improving water quality. Under CID condition, water stress is frequently experienced in two contexts: first drought and then flooding (FDTF) and first flooding and then drought (FFTD). This study aimed to investigate the effects of FDTF and FFTD on nitrogen (N) and phosphorus (P) dynamics in paddy water at different growth stages. The effects of water stress on the migration and transformation of N and P were also investigated. Results showed that CID can decrease N and P concentrations in surface water.NH4+-Nwas the major form of N in surface drainage and percolation water. Mean total phosphorus (TP),NH4+-N, andNO3--Nconcentrations were significantly higher than in FFTD during the growth stage. MeanNH4+-N,NO3--N, and TP concentrations were significantly higher in percolation water under flooding stress than those under drought stress at growth stage, except for mean TP concentrations at milky stage (stage IV). Meanwhile, flooding can sharply increase theNH4+-N,NO3--N, and TP concentrations in percolation water after drought. Thus, without CID, the considerably highNH4+-N,NO3--N, and TP concentrations via runoff and leaching can be responsible for the eutrophication of water bodies in the vicinity of paddy fields during the rice growing season when water stress transforms from drought into flooding.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3