An Explainable Stacked Ensemble Model for Static Route-Free Estimation of Time of Arrival

Author:

Schleibaum Sören1ORCID,Müller Jörg P.1ORCID,Sester Monika2ORCID

Affiliation:

1. Clausthal University of Technology, Clausthal-Zellerfeld, Germany

2. Leibniz University Hannover, Hanover, Germany

Abstract

Sustainable concepts for on-demand transportation, such as ridesharing or ridehailing, require advanced technologies and novel dynamic planning and prediction methods. In this paper, we consider the prediction of taxi trip durations, focusing on the problem of the estimated time of arrival (ETA). ETA can be used to compute and compare alternative taxi schedules and to provide information to drivers and passengers. To solve the underlying hard computational problem with high precision, machine learning (ML) models for ETA are the state of the art. However, these models are mostly black box neural networks. Hence, the resulting predictions are difficult to explain to users. To address this problem, the contributions of this paper are threefold. First, we propose a novel stacked two-level ensemble model combining multiple ETA models; we show that the stacked model outperforms state-of-the-art ML models. However, the complex ensemble architecture makes the resulting predictions less transparent. To alleviate this, we investigate explainable artificial intelligence (XAI) methods for explaining the first- and second-level models of the ensemble. Third, we consider and compare different ways of combining first-level and second-level explanations. This novel concept enables us to explain stacked ensembles for regression tasks. The experimental evaluation indicates that the considered ETA models correctly learn the importance of those input features driving the prediction.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3