Application of Constant Proportional Caputo Fractional Derivative to Thermodiffusion Flow of MHD Radiative Maxwell Fluid under Slip Effect over a Moving Flat Surface with Heat and Mass Diffusion

Author:

Ahmad Adnan1,Nazar M.1ORCID,Ahmad M.12ORCID,Eldin Sayed M.3,Nisa Zaib Un2ORCID,Waqas Hassan4ORCID,Imran M.5ORCID

Affiliation:

1. Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan

2. Department of Mathematics and Statistics, Institute of Southern Punjab, Multan, Pakistan

3. Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt

4. School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China

5. Department of Mathematics, Government College University, Faisalabad, Pakistan

Abstract

Thermal diffusion is a phenomenon where the concentration gradient or diffusive flux is created due to the temperature gradient. Thermal diffusion is induced because of the higher temperature and uneven distribution of the mixture. Formally, thermal diffusion is called the Soret effect, and it is a crucial factor in a number of natural occurrences like the separation of isotopes technique of purification. In this research paper, Maxwell fluid’s flow in the vicinage of a flat plate is discussed by considering the effect of the thermodiffusion subject to the first-order slip at the boundary with the application of a constant proportional Caputo (CPC) fractional derivative. The effect of heat generation and radiation is also taken into consideration, as well as the effect of a magnetic field of constant magnitude. The generalized heat and mass fluxes are considered, and this generalization of heat and mass fluxes is done by utilizing the CPC fractional derivative. After converting the current model’s governing equations into a dimensionless form, the temperature, concentration, and velocity fields’ analytical solutions are found. By drawing graphs of the temperature, concentration, and velocity fields for the parametric modifications, the results are graphically illustrated. It becomes clear from the results discussion that the outcomes produced by the constant proportional derivative are more decaying than those obtained with the classical differential operator of order one.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3