Computational Evaluation of the Structural, Topological, and Solvent Effects on the Nonlinear Optical Properties of 1-Methylurea Butanedioic Acid Crystal

Author:

Tasheh Stanley Numbonui1ORCID,Nkungli Nyiang Kennet1ORCID,Tsapi Charly Tedjeuguim2,Ajifac Dodo Lydie1,Ghogomu Julius Numbonui12ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, The University of Bamenda, P. O. Box 39, Bambili, Bamenda, Cameroon

2. Research Unit of Noxious Chemistry and Environmental Engineering, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon

Abstract

In silico investigation of the effects of a molecule’s framework and surroundings on its nonlinear optical (NLO) response is still an active topic of study in the fields of photonics and optoelectronics. NLO materials play a crucial role in modern photonics and optoelectronic technologies. Presented here is a comprehensive theoretical analysis of the structural, topological, and NLO features of 1-methylurea butanedioic acid (MUBA) alongside solvent effects (water, DMSO, and benzene) using the DFT method at the B3LYP(D4)/6–311++G(d,p) level. Geometric and infrared parameters were calculated and compared with experimental values. The analysis using atoms in molecules (AIM) and the independent gradient model (IGM) reveals the presence of two noncovalent intermolecular interactions: N4–H16⋯O12 and O6–H25⋯O3, which stabilize the crystal structure. The natural bond orbital (NBO) analysis reveals that the LP(1)N4 ⟶ π(C2-O3) interaction is the most stabilizing and is enhanced in solvent environments. NLO data show that the first (βtot) and second (γ) hyperpolarizability values of MUBA are approximately 0.6–1.1 and 8.3–17.0 times higher than those of urea. In addition, the quadratic and cubic responses of MUBA are significantly reduced and increased, respectively, in solvent environments. Based on its NLO susceptibilities, MUBA exhibits SHG, EOPE, OKE, and EFISHG properties, suggesting its potential application in the production of optoelectronic devices and optical limiting. This study enhances our understanding of the factors influencing the NLO behaviour of organic crystals, providing valuable insights for designing materials with enhanced NLO characteristics. The implications extend to industries such as telecommunications and computing, where faster data transmission rates are in high demand.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3