Differential Privacy Location Protection Method Based on the Markov Model

Author:

Li Hongtao1ORCID,Wang Yue1ORCID,Guo Feng2,Wang Jie1,Wang Bo1,Wu Chuankun2

Affiliation:

1. College of Mathematics and Computer Science, Shanxi Normal University, 041000 Linfen, China

2. School of Information Science and Engineering, Linyi University, Linyi 276002, China

Abstract

Location-based services (LBS) have become an important research area with the rapid development of mobile Internet technology, GPS positioning technology, and the widespread application of smart phones and social networks. LBS can provide convenience and flexibility for the users’ daily life, but at the same time, it also brings security risks to the users’ privacy. Untrusted or malicious LBS servers can collect users’ location data through various ways and disclose it to the third party, thus causing users’ privacy leakage. In this paper, a differential privacy location protection method based on the Markov model for user’s location privacy is proposed. Firstly, the transition probability matrix between states of the n -order Markov model is used to predict the occurrence state and development trend of events; thereby, the user’s location is predicted, and then a location prediction algorithm based on the Markov model (LPAM) is proposed. Secondly, a location protection algorithm based on differential privacy (LPADP) is proposed, in which location privacy tree (LPT) is constructed according to the location data and the difficulty of retrieval, the two nodes with the largest predicted value of LPT are allocated with a reasonable privacy budget, and Laplace noise is added to protect location privacy. Theoretical analysis and experimental results show that the proposed method not only meets the requirements of differential privacy and protects location privacy effectively but also has high data availability and low time complexity.

Funder

Scientific and Technological Innovation Project in Colleges and Universities of Shanxi Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3