Effect of pH on Escherichia coli Removal by Electrocoagulation and Elimination Kinetics after Treatment

Author:

Ndjomgoue-Yossa A. C.12ORCID,Nanseu-Njiki C. P.2,Ngameni E.2

Affiliation:

1. Department of Chemistry, Faculty of Sciences, The University of Bamenda, P.O Box 39, Bambili, Bamenda, Cameroon

2. Laboratoire de Chimie Analytique, Faculté des Sciences, Université de Yaoundé I, B P 812, Yaoundé, Cameroon

Abstract

There are different techniques for removing microorganisms in wastewater, each with its own advantages and disadvantages. Electrocoagulation because of its simplicity has gained great attention and is used for the removal of various ions, organic matters, and microorganisms. In this study, the effectiveness and mechanism of Escherichia coli (E. coli) removal by electrocoagulation process using aluminum and ordinary steel electrodes at different initial-pH and the kinetics of elimination of E. coli in solution after treatment were investigated. Artificial wastewater contaminated by E. coli culture was used in the experiments. The results show that the initial-pH influences significantly the effectiveness of E. coli removal. Under the experimental conditions used, more than 5 log removal of E. coli is obtained, irrespective of the nature of the electrode (ordinary steel or aluminum) and the value of the initial pH. On the one hand, the best rates of elimination are obtained for solutions that are slightly acidic (pH 5.5) and for an alkaline pH (8.5 and 10). On the other hand, the elimination decreases for a neutral solution and for a very acidic solution (pH 2.9) because of the strong resistance developed by E. coli at those pH values. For optimal treatment, the choice of electrode material depends on the initial pH. Furthermore, the study of the kinetics of elimination of E. coli after treatment shows the remanent power of the electrocoagulation process. It allows reducing treatment time and energy consumption, thus reducing the cost of treatment.

Funder

International Foundation of Science

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3