Affiliation:
1. School of Computer Science Engineering, Lovely Professional University, Phagwara 144411, India
2. School of Computer Applications, Lovely Professional University, Phagwara 144411, India
3. Isteqlal Institute of Higher Education, Kabul, Afghanistan
Abstract
The recommended tool for assessing knee injury is magnetic resonance imaging (MRI). However, knee MRI interpretation takes time and is vulnerable to clinical errors and inconsistency. A deep learning automated technique for reading knee MRI might help physicians identify high-risk patients and make diagnosis easier. In this study, we have proposed a deep learning-based model to detect ACL and meniscus tears and other knee abnormalities. At its core, this model is based on the ResNet50 transfer learning technique. In this paper, we have focused to present a ResNet50-based model for detecting different knee problems using MRIs. The best models for every option achieved the objectives that were probably similar. The models were developed using 18, 3, and 1 slice. These models’ outcomes were rather startling. The AUC findings obtained with 1 slice per MRI exam were equivalent to those obtained with 18 and 3 slices and, in some cases, were significantly better. The dataset used in this model is from Stanford University. We trained this model in three different settings of MRI slices (18, 3, and 1). The best results that our models were able to achieve were when trained using 3 slices of each MRI sample. The area under the receiver operating characteristic curve, or AUC curve, values that our best models were able to achieve for detecting ACL, meniscus, and other knee abnormalities are 0.87, 0.82, and 0.90, respectively. The results of our models are comparable to some state-of-the-art models. These models are very fast and efficient to train and hence will be helpful to doctors for making an effective and fast diagnosis based on knee MRIs.
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献