A ResNet50-Based Approach to Detect Multiple Types of Knee Tears Using MRIs

Author:

Sharma Shilpa1ORCID,Umer Mohammad1ORCID,Bhagat Avinash2ORCID,Bala Jeevan1ORCID,Rattan Punam2ORCID,Rahmani Abdul Wahab3ORCID

Affiliation:

1. School of Computer Science Engineering, Lovely Professional University, Phagwara 144411, India

2. School of Computer Applications, Lovely Professional University, Phagwara 144411, India

3. Isteqlal Institute of Higher Education, Kabul, Afghanistan

Abstract

The recommended tool for assessing knee injury is magnetic resonance imaging (MRI). However, knee MRI interpretation takes time and is vulnerable to clinical errors and inconsistency. A deep learning automated technique for reading knee MRI might help physicians identify high-risk patients and make diagnosis easier. In this study, we have proposed a deep learning-based model to detect ACL and meniscus tears and other knee abnormalities. At its core, this model is based on the ResNet50 transfer learning technique. In this paper, we have focused to present a ResNet50-based model for detecting different knee problems using MRIs. The best models for every option achieved the objectives that were probably similar. The models were developed using 18, 3, and 1 slice. These models’ outcomes were rather startling. The AUC findings obtained with 1 slice per MRI exam were equivalent to those obtained with 18 and 3 slices and, in some cases, were significantly better. The dataset used in this model is from Stanford University. We trained this model in three different settings of MRI slices (18, 3, and 1). The best results that our models were able to achieve were when trained using 3 slices of each MRI sample. The area under the receiver operating characteristic curve, or AUC curve, values that our best models were able to achieve for detecting ACL, meniscus, and other knee abnormalities are 0.87, 0.82, and 0.90, respectively. The results of our models are comparable to some state-of-the-art models. These models are very fast and efficient to train and hence will be helpful to doctors for making an effective and fast diagnosis based on knee MRIs.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3