Effect of Chlorogenic Acid (5-Caffeoylquinic Acid) Isolated fromBaccharis oxyodontaon the Structure and Pharmacological Activities of Secretory Phospholipase A2 fromCrotalus durissus terrificus

Author:

Toyama Daniela O.1,Ferreira Marcelo J. P.2,Romoff Paulete3,Fávero Oriana A.4,Gaeta Henrique H.1,Toyama Marcos H.1

Affiliation:

1. UNESP, Campus Experimental do Litoral Paulista, PraÇa Infante Dom Henrique s/no, Bairro Parque Bitaru, 11330-900 São Vicente, SP, Brazil

2. Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, RuadoMatão 277, 05508-090 São Paulo, SP, Brazil

3. Escola de Engenharia, Curso de Química, Universidade Presbiteriana Mackenzie, Rua da Consolação 930, 01302-907 São Paulo, SP, Brazil

4. Centro de Ciências Biológicas e da Saúde, Curso de Ciências Biológicas, Universidade Presbiteriana Mackenzie, Rua da Consolação 930, 01302-907 São Paulo, SP, Brazil

Abstract

The aim of this paper was to investigate the effect of chlorogenic acid (5-caffeoylquinic acid, 5CQA), isolated fromBaccharis oxyodonta, on the structure and pharmacological effect of secretory phospholipase A2 (sPLA2) fromCrotalus durissus terrificus. Allin vitroandin vivoexperiments were conducted using a purified sPLA2 compared under the same experimental conditions with sPLA2 : 5CQA. 5CQA induced several discrete modifications in the secondary structure and the hydrophobic characteristics of native sPLA2 that induced slight changes in the α-helical content, increase in the random coil structure, and decrease of fluorescence of native sPLA2. Moreover, 5CQA significantly decreased the enzymatic activity and the oedema and myonecrosis induced by native sPLA2. As the catalytic activity of sPLA2 plays an important role in several of its biological and pharmacological properties, antibacterial activity was used to confirm the decrease in its enzymatic activity by 5CQA, which induced massive bacterial cell destruction. We found that 5CQA specifically abolished the enzymatic activity of sPLA2 and induced discrete protein unfolding that mainly involved the pharmacological site of sPLA2. These results showed the potential application of 5CQA in the snake poisoning treatment and modulation of the pathological effect of inflammation induced by secretory PLA2.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3