Mixed Replenishment Policy for ATO Supply Chain Based on Hybrid Genetic Simulated Annealing Algorithm

Author:

Huang Hui1,Jin Yan2,Huang Bo1ORCID,Qiu Han-Guang2

Affiliation:

1. School of Economics and Business Administration, Chongqing University, Chongqing 400044, China

2. School of Computer Science and Information Technology, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

Abstract

Timely components replenishment is the key to ATO (assemble-to-order) supply chain operating successfully. We developed a production and replenishment model of ATO supply chain, where the ATO manufacturer adopts both JIT and (Q,r) replenishment mode simultaneously to replenish components. The ATO manufacturer’s mixed replenishment policy and component suppliers’ production policies are studied. Furthermore, combining the rapid global searching ability of genetic algorithm and the local searching ability of simulated annealing algorithm, a hybrid genetic simulated annealing algorithm (HGSAA) is proposed to search for the optimal solution of the model. An experiment is given to illustrate the rapid convergence of the HGSAA and the good quality of optimal mixed replenishment policy obtained by the HGSAA. Finally, by comparing the HGSAA with GA, it is proved that the HGSAA is a more effective and reliable algorithm than GA for solving the optimization problem of mixed replenishment policy for ATO supply chain.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliable Inventory Management of Key Parts for Wind Turbine Production Under R&D Uncertainty;IEEE Transactions on Reliability;2024

2. Opinion leader detection: A methodological review;Expert Systems with Applications;2019-01

3. Assemble-to-order systems: A review;European Journal of Operational Research;2017-09

4. An Optimization Model for Expired Drug Recycling Logistics Networks and Government Subsidy Policy Design Based on Tri-level Programming;International Journal of Environmental Research and Public Health;2015-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3