Refining Sparse Cell-ID Trajectory of Public Service Vehicles by Spatiotemporal Modelling

Author:

Zhu Kemin1ORCID,Liu Junli1ORCID,Song Xianfeng123ORCID,Wang Weifeng1ORCID,Chen Hao4ORCID

Affiliation:

1. College of Resources and Environment, Chinese Academy of Sciences, Beijing 100049, China

2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Quantitative Remote Sensing Information Technology, Chinese Academy of Sciences, Beijing 100049, China

4. School of Urban and Environmental Sciences, Huaiyin Normal University, Huai’an 223001, Jiangsu, China

Abstract

Mobile phone data have become a critical data source for transportation research. While a cell-id trajectory was routinely reorganized by International Mobile Subscriber Identity (IMSI), it potentially allows to analyze transportation behaviors and social interaction of total population, with a full temporal coverage at low cost. However, cell-id trajectory is often sparse due to low reporting frequency and uncertainness of mobile holders’ position. So, the cell-id trajectory refinement has been recognized as challenging work to further facilitate trajectory data mining. This paper presents a comprehensive approach to identify cell-id trajectories of public service vehicles (PSVs) from large volume of trajectories and further refines these cell-id trajectories by a heuristic global optimization approach. The modified longest common subsequence (LCSS) method is used to match a cell-id trajectory and a public transportation route (PTR) and correspondingly calculates their similarities for determining whether the trajectory is PSV mode or not. Taking full advantages of the nature of a PSV tends to move on the PTR in uniform motion to meet a prescript visit to stops, a heuristic global optimization approach is deployed to build a spatiotemporal model of a PSV motion, which estimates new locations of cell-id trajectories on the PTR. The approach was finally tested using Beijing cellular network signaling datasets. The precision of PSV trajectory detection is 90%, and the recall is 88%. Evaluated by our GNSS-logged trajectories, the mean absolute error (MAE) of refined PSV trajectories is 144.5 m and the standard deviation (St. Dev) is 81.8 m. It shows a significant improvement in comparison of traditional interpolation methods.

Funder

National Key Research and Development Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3