A Vehicle Parking Detection Method Based on Correlation of Magnetic Signals

Author:

Zhu Hongmei12ORCID,Yu Fengqi12

Affiliation:

1. Department of Integrated Electronics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

2. The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong

Abstract

Recently, significant research efforts have been focused on vehicle parking detection due to fuel consumption and traffic congestion. Many solutions have been successfully applied in indoor parking lots. However, due to the strong noise disturbance in outdoor parking environment, the detection accuracy for on-street parking is still a challenging task. In this paper, we propose a vehicle parking detection method by the use of normalized cross-correlation (NCC) of magnetic signals generated by magnetoresistive sensors. In the proposed method, the sensed signal is correlated with a reference. If the result is greater than a threshold, a pulse is generated. One of the primary factors that affect the accuracy of the NCC-based detection is the choice of reference which is obtained by using a k-means clustering algorithm in this paper. Compared with the-state-of-the-art vehicle detection methods, the proposed method is competitive in terms of cost, accuracy, and complexity. The proposed method is simulated and tested on the Xueyuan Boulevard, University Town of Shenzhen, Nanshan, Shenzhen, China. The experimental results show that the proposed method can provide the detection accuracy of 99.33% for arrival and 99.63% for departure.

Funder

Fujian Government

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Velocity Estimation of Underwater Vehicle Based on Abnormal Magnetic Field Waveform;IEEE Sensors Journal;2024-01-01

2. Parking Lots Management and Visualization in the Smart City - Digital Twin context;2023 IEEE International Conference on Metaverse Computing, Networking and Applications (MetaCom);2023-06

3. Low-cost, High Accuracy Smart Parking Solution for Urban Areas;2023 IEEE Integrated STEM Education Conference (ISEC);2023-03-11

4. Bibliography;Machine Learning for Transportation Research and Applications;2023

5. Transportation data and sensing;Machine Learning for Transportation Research and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3