An Efficient and Robust Method to Predict Multifractured Horizontal Well Production in Shale Oil and Gas Reservoirs

Author:

Chen Ling1ORCID,Bai Yuhu1,Xu Bingxiang1,Li Yanzun1,Dong Zhiqiang1,Wang Suran1ORCID

Affiliation:

1. CNOOC Research Institute Co., Ltd., Beijing 100028, China

Abstract

Shale oil and gas reservoirs are developed by MFHWs. After large-scale hydraulic fracturing, it is hard to forecast the production rate using the theoretical method. In the engineering application field, the empirical method of DCA is often used to forecast the production rate of shale oil and gas produced by MFHWs. However, there are some problems in using DCA, like how to find out the proper decline model and switch point of two contiguous flowing periods and how to deal with the unsteady operation condition which causes a lot of uncertainty in production forecast. In order to solve these problems, firstly, a straight line model, representing the linear flow period in the life cycle of shale oil and gas produced by MFHWs, in the Q , lg q coordinate system is proven to be theoretically proper. Secondly, the duration of the linear flow period is verified to be over 10~15 years by using an analytical model to do the calculation with the method of Monte Carlo random sampling taking a large amount of parameter combinations of Eagle Ford shale oil and gas reservoirs into calculation. And a field data analysis of Barnett and Eagle Ford also shows that the duration of linear flow period can be more than 10~15 years. Thus, a method of production forecast taking advantage of the straight line feature in the Q , lg q coordinate system is raised. After practical use, it is found that the method is robust and can increase the forecast efficiency and decrease the manual error. Moreover, it can increase the accuracy of production forecast and deal with some unsteady operation conditions. Therefore, this new method has good promotional value in the engineering field.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3