Image Recognition of Badminton Swing Motion Based on Single Inertial Sensor

Author:

Chu Zhesen1ORCID,Li Min2

Affiliation:

1. School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan 450001, China

2. English and Economic and Trade Department, Jiaozuo Normal College, Jiaozuo, Henan 454000, China

Abstract

This article analyzes the method of reading data from inertial sensors. We introduce how to create a 3D scene and a 3D human body model and use inertial sensors to drive the 3D human body model. We capture the movement of the lower limbs of the human body when a small number of inertial sensor nodes are used. This paper introduces the idea of residual error into the deep LSTM network to solve the problem of gradient disappearance and gradient explosion. The main problem to be solved by wearable inertial sensor continuous human motion recognition is the modeling of time series. This paper chooses the LSTM network which can handle time series as well as the main frame. In order to reduce the gradient disappearance and gradient explosion problems in the deep LSTM network, the structure of the deep LSTM network is adjusted based on the residual learning idea. In this paper, a data acquisition method using a single inertial sensor fixed on the bottom of a badminton racket is proposed, and a window segmentation method based on the combination of sliding window and action window in real-time motion data stream is proposed. We performed feature extraction on the intercepted motion data and performed dimensionality reduction. An improved Deep Residual LSTM model is designed to identify six common swing movements. The first-level recognition algorithm uses the C4.5 decision tree algorithm to recognize the athlete’s gripping style, and the second-level recognition algorithm uses the random forest algorithm to recognize the swing movement. Simulation experiments confirmed that the proposed improved Deep Residual LSTM algorithm has an accuracy of over 90.0% for the recognition of six common swing movements.

Funder

Zhengzhou University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of optical motion capture based on multimodal sensors in badminton player motion recognition system;Optical and Quantum Electronics;2023-12-27

2. Retracted: Image Recognition of Badminton Swing Motion Based on Single Inertial Sensor;Journal of Sensors;2023-12-20

3. Accuracy of badminton swing action recognition based on fractional time network;Journal of Intelligent & Fuzzy Systems;2023-08-01

4. Optimizing Badminton Action Recognition with Deep Learning and Sensor Fusion: A Study of Sensor Numbers and Combinations;2023 IEEE 13th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER);2023-07-11

5. Badminton Action Analysis Using LSTM;2023 International Conference on Applied Intelligence and Sustainable Computing (ICAISC);2023-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3