Recapitulation and Prospect of Research on Flow Field in Coal Mine Gob

Author:

Zhang Rui1ORCID,Cheng Jianwei1ORCID,Wang Zui1ORCID,Shao Zhenlu12ORCID

Affiliation:

1. School of Safety Engineering, China University of Mining and Technology, Jiangsu, Xuzhou, China

2. Xinjiang Coalfield Fire-Extinguishing Engineering Bureau, Urumqi, Xinjiang, China

Abstract

Coal mine gob, mined-out areas in underground coal mines, often accumulates explosive methane-air mixtures that pose a deadly hazard to miners. A good understanding of the flow field in a sealed coal mine area is crucial in preventing and minimizing accidents associated with mine combustible gases and also for planning and implementing a mine rescue strategy. In recent years, the research on the flow field in the gob has changed from qualitative research in the past to quantitative research. This paper synthesizes the research results of flow field in gob in recent 40 years, covering the permeability of quarried areas, the airflow simulation in quarried areas, and the influence of ventilation parameters and geohydrological conditions on the flow field. Firstly, the overburden failure mechanism and fracture development characteristics of the mine gob, the distribution of porosity and permeability in the gob, and the relationship between them are introduced. Secondly, the development of research methods and numerical models used to study the flow field in mine gob is discussed. The distribution of the flow field in the gob under different conditions is expounded. Thirdly, the research on the prevention and control of fire and explosion risks in the gob is discussed. Finally, the problems to be solved in such research direction are addressed and suggestions are put forward.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference115 articles.

1. Methane migration and accumulation state after seam mining;S. Li;Coal Geology & Exploration,2000

2. A research on comprehensive gas control technology for use in gob areas in “three-soft” unstable coal seams with poor permeability;S. Liu;China Coal,2010

3. Research progress and prospect of mine pressure appearance theory;G. Wang;Inner Mongolia Coal Economy,2016

4. Theoretical study of key stratum in ground control;M. Qian;Journal of China Coal Society,1996

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3