Development of Energy-Efficient Routing Protocol in Wireless Sensor Networks Using Optimal Gradient Routing with On Demand Neighborhood Information

Author:

Kannan K. Nattar1,Paramasivan B.2

Affiliation:

1. Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India

2. Department of Computer Science and Engineering, National Engineering College, Kovilpatti, Tamil Nadu 628503, India

Abstract

Wireless sensor networks (WSNs) consist of a number of autonomous sensor nodes which have limited battery power and computation capabilities with sensing of various physical and environmental conditions. In recent days, WSNs adequately need effective mechanisms for data forwarding to enhance the energy efficiency in networks. In WSNs, the optimization of energy consumption is a crucial issue for real-time application. Network topology of WSNs also is changed dynamically by anonymous nodes. Routing protocols play a major role in WSNs for maintaining the routes and for ensuring reliable communication. In this paper, on demand acquisitions of neighborhood information are used to find the optimal routing paths that reduce the message exchange overhead. It optimizes the number of hops for packet forwarding to the sink node which gives a better solution for energy consumption and delay. The proposed protocol combines the on demand multihop information based multipath routing (OMLRP) and the gradient-based network for achieving the optimal path which reduces energy consumption of sensor nodes. The proposed routing protocol provides the least deadline miss ratio which is most suitable to real-time data delivery. Simulation results show that the proposed routing protocol has achieved good performance with respect to the reduction in energy efficiency and deadline miss ratio.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3