Affiliation:
1. Institute for Time Nature Explorations, M.V. Lomonosov’s Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia
Abstract
We consider the equations of motion of three-body problem in aLagrange form(which means a consideration of relative motions of 3 bodies in regard to each other). Analyzing such a system of equations, we consider in detail the case of moon’s motion of negligible massm3around the 2nd of two giant-bodiesm1,m2(which are rotating around their common centre of masses on Kepler’s trajectories), the mass of which is assumed to be less than the mass of central body. Under assumptions of R3BP, we obtain the equations of motion which describe the relative mutual motion of the centre of mass of 2nd giant-bodym2(planet) and the centre of mass of 3rd body (moon) with additional effective massξ·m2placed in that centre of massξ·m2+m3, whereξis the dimensionless dynamical parameter. They should be rotating around their common centre of masses on Kepler’s elliptic orbits. For negligible effective massξ·m2+m3it gives the equations of motion which should describe aquasi-ellipticorbit of 3rd body (moon) around the 2nd bodym2(planet) for most of the moons of the planets in Solar System.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献