Parameters Optimization of Curtain Grouting Reinforcement Cycle in Yonglian Tunnel and Its Application

Author:

Zhang Qingsong1,Li Peng1,Wang Gang1,Li Shucai1,Zhang Xiao1,Zhang Qianqing1,Wang Qian1,Liu Jianguo1

Affiliation:

1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China

Abstract

For practical purposes, the curtain grouting method is an effective method to treat geological disasters and can be used to improve the strength and permeability resistance of surrounding rock. Selection of the optimal parameters of grouting reinforcement cycle especially reinforcement cycle thickness is one of the most interesting areas of research in curtain grouting designs. Based on the fluid-structure interaction theory and orthogonal analysis method, the influence of reinforcement cycle thickness, elastic modulus, and permeability on water inflow of tunnel after grouting and stability of surrounding rock was analyzed. As to the water inflow of tunnel after grouting used as performance evaluation index of grouting reinforcement cycle, it can be concluded that the permeability was the most important factor followed by reinforcement cycle thickness and elastic modulus. Furthermore, pore water pressure field, stress field, and plastic zone of surrounding rock were calculated by using COMSOL software under different conditions of reinforcement cycle thickness. It also can be concluded that the optimal thickness of reinforcement cycle and permeability can be adopted as 8 m and 1/100 of the surrounding rock permeability in the curtain grouting reinforcement cycle. The engineering case provides a reference for similar engineering.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference18 articles.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3