A Modified Range Consensus Algorithm Based on GA for Receiver Autonomous Integrity Monitoring

Author:

Zhao Jing1,Xu Chengdong1ORCID,Jian Yimei1,Zhang Pengfei2ORCID

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100086, China

2. College of Mechatronic Engineering, North University of China, No. 3 Xueyuan Road, Taiyuan, Shanxi 030051, China

Abstract

With the considerable increase of visible satellites for positioning, the fault detection and identification performance of Range Consensus (RANCO) algorithm for Receiver Autonomous Integrity Monitoring (RAIM) will significantly be improved. However, the calculation amount of RANCO algorithm will exponentially increase for the sharp addition of visible satellite subsets. This paper proposes a modified RANCO algorithm based on genetic algorithm (GA-RANCO) for RAIM to inhibit the exponentially expanded calculation amount. To reduce the calculation amount in searching the optimal minimal necessary subset (MNS), the preselection step is developed to speed up the convergence process of GA-RANCO. It is executed to exclude the chromosome-represented MNS for which the count of faulty satellites will exceed the upper limit of independent simultaneous satellite faults to be monitored. Mathematical simulations are introduced to determine the GA parameters, and simulation experiments under different schemes are designed to evaluate the performance of GA-RANCO algorithm. Results illustrate that the time consumption under a large number of visible satellites of GA-RANCO is much lower than that of RANCO and the faulty detection and identification performance of GA-RANCO is the same as that of RANCO.

Funder

Natural Science Foundation of Shanxi Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3