A Parallelized Variable Fixing Process for Solving Multistage Stochastic Programs with Progressive Hedging

Author:

Bagaram Martin B.12ORCID,Tóth Sándor F.2,Jaross Weikko S.3,Weintraub Andrés4

Affiliation:

1. Industrial and System Engineering, University of Washington, Seattle 98196-2650, WA, USA

2. School of Environmental and Forest Science, University of Washington, Box 352100, Seattle 98195, WA, USA

3. Informatics and Client Services, LandVest Inc., Olympia, WA 98506, USA

4. Departmento de Ingenieria Industrial, Universidad de Chile, Santiago, Chile

Abstract

Long time horizons, typical of forest management, make planning more difficult due to added exposure to climate uncertainty. Current methods for stochastic programming limit the incorporation of climate uncertainty in forest management planning. To account for climate uncertainty in forest harvest scheduling, we discretize the potential distribution of forest growth under different climate scenarios and solve the resulting stochastic mixed integer program. Increasing the number of scenarios allows for a better approximation of the entire probability space of future forest growth but at a computational expense. To address this shortcoming, we propose a new heuristic algorithm designed to work well with multistage stochastic harvest-scheduling problems. Starting from the root-node of the scenario tree that represents the discretized probability space, our progressive hedging algorithm sequentially fixes the values of decision variables associated with scenarios that share the same path up to a given node. Once all variables from a node are fixed, the problem can be decomposed into subproblems that can be solved independently. We tested the algorithm performance on six forests considering different numbers of scenarios. The results showed that our algorithm performed well when the number of scenarios was large.

Funder

University of Washington

Publisher

Hindawi Limited

Subject

Management Science and Operations Research

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3