Identification of Differentially Expressed lncRNAs and mRNAs in Children with Acquired Aplastic Anemia by RNA Sequencing

Author:

Lu Shuanglong1ORCID,Song Xiaoxiao1,Chen Jing2ORCID,Qiao Xiaohong1ORCID

Affiliation:

1. Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China

2. Department of Hematology/Oncology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China

Abstract

Background. The effects of long noncoding RNAs (lncRNAs) and their related messenger RNAs (mRNAs) remain unknown in children with acquired aplastic anemia (AA). The aim of this study is to screen key lncRNAs and mRNAs and investigate their potential roles in the pathology of acquired AA in children. Methods. RNA sequencing was performed to identify differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) between blood samples of acquired AA children and healthy controls. cis-regulation, trans-regulation, competing endogenous (Ce) regulation networks of DElncRNAs and DEmRNAs were constructed. A literature search was performed to identify immune- or hematopoietic-related DElncRNA-DEmRNA pairs, and qPCR was conducted to validate the expression of the immune- or hematopoietic-related DElncRNA and DEmRNA. Results. 60 DElncRNAs and 364 DEmRNAs were identified. 13 DElncRNAs were predicted to have 15 cis-regulated target DEmRNAs, 16 DElncRNAs might have 28 trans-regulated DEmRNAs, and 2 DElncRNAs might have 9 Ce-regulated DEmRNAs. After literature screen and qPCR validation, 6 immune- or hematopoietic-related DElncRNA-DEmRNA pairs in the networks above were identified as key RNAs in the pathology of acquired AA. Conclusion. This study revealed key lncRNAs in children with acquired AA and proposed their potential functions by predicting their target mRNAs, which lay the foundation for future study of potential effects of lncRNAs in children with acquired AA.

Funder

National Natural Science Fund Project of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3