Study QoS Optimization and Energy Saving Techniques in Cloud, Fog, Edge, and IoT

Author:

Qu Zhiguo12,Wang Yilin12,Sun Le12ORCID,Peng Dandan12,Li Zheng12

Affiliation:

1. Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing, China

2. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, 210044 Nanjing, China

Abstract

With an increase of service users’ demands on high quality of services (QoS), more and more efficient service computing models are proposed. The development of cloud computing, fog computing, and edge computing brings a number of challenges, e.g., QoS optimization and energy saving. We do a comprehensive survey on QoS optimization and energy saving in cloud computing, fog computing, edge computing, and IoT environments. We summarize the main challenges and analyze corresponding solutions proposed by existing works. This survey aims to help readers have a deeper understanding on the concepts of different computing models and study the techniques of QoS optimization and energy saving in these models.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The effect of task processing management on energy consumption at the edge of Internet of things network with using reinforcement learning method;Computers & Industrial Engineering;2024-09

2. A Pragmatic Review of QoS Optimisations in IoT Driven Networks;Wireless Personal Communications;2024-07

3. Graph Neural Networks for IoT Data Aggregation Scheduling;NOMS 2024-2024 IEEE Network Operations and Management Symposium;2024-05-06

4. Decision tree‐based task offloading in vehicle edge computing;Concurrency and Computation: Practice and Experience;2024-01-30

5. A Review Load balancing algorithms in Fog Computing;BIO Web of Conferences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3