Identification of Fungal Pathogens of Mango and Soursop Fruits Using Morphological and Molecular Tools and Their Control Using Papaya and Soursop Leaf and Seed Extracts

Author:

Hernández-Guerrero Sara Elena1,Balois-Morales Rosendo12ORCID,Bautista-Rosales Pedro Ulises2ORCID,López-Guzmán Graciela Guadalupe1,Berumen-Varela Guillermo2ORCID,Palomino-Hermosillo Yolotzin Apatzingan2,Jimenez-Zurita José Orlando2ORCID,Bello-Lara Juan Esteban3ORCID,León-Fernandez Andrés Eloy3

Affiliation:

1. Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Unidad Académica de Agricultura, Carretera Tepic-Compostela km. 9. C.P. 63780. Xalisco, Tepic, Nayarit, Mexico

2. Unidad de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Avenida de la Cultura S/N Centro, Tepic, Nayarit, Mexico

3. Tecnológico Nacional de México, Campus Sur de Nayarit, Carretera crucero Ahuacatlán-Jala km. 4.5, C.P. 63880, Jala, Nayarit, Mexico

Abstract

Fruit and vegetable products are susceptible to the attack of fungi during postharvest handling. Chemical fungicides are the most commonly used technique to control fungal diseases. However, an alternative product is the use of plant extracts, which have been reported in in vitro and in vivo conditions. The objective of this investigation was to identify one of the main pathogens of mango and soursop fruits using morphological and molecular tools as well as to evaluate the in vitro inhibitory effect of papaya and soursop leaf and seed extracts. Two pathogens were isolated and identified by their morphological and molecular characteristics from mango and soursop fruits. We obtained extracts from leaves and seeds of soursop and papaya using five solvents of increasing polarity (hexane, acetone, ethanol, methanol, and water) through the ultrasound-assisted extraction technique at a frequency of 35 kHz and 160 W for 14 min. In vitro evaluations of the extracts were performed using the Kirby–Bauer technique. The extracts with the highest percentage of inhibition were analyzed qualitatively and quantitatively using standardized techniques of colorimetry and spectrophotometry. Furthermore, we determined the content of total phenols, flavonoids, alkaloids, terpenoids, anthraquinones, coumarins, and saponins. As a result, we identified the pathogens as Colletotrichum fructicola and Nectria haematococca. Aqueous extracts (water as a solvent) showed a higher percentage of inhibition of both pathogens compared with the other extracts. Furthermore, the aqueous extract of papaya leaf was the most effective among all extracts. The aqueous papaya leaf extract exhibited a percentage of inhibition of 49.86% for C. fructicola and 47.89% for N. haematococca. The aqueous extracts of papaya leaf and seed (AqEPL and AqEPS) presented the greatest amount of metabolites (except anthraquinones and coumarins). The aqueous soursop leaf extract (AqESL) presented the greatest amount of phenols, tannins, and flavonoids (219.14 ± 8.52 mg GAE/L, 159.84 ± 10 mg GAE/g dm and 0.13 ± 1.12 × 10−4, respectively). The aqueous soursop seed extract (AqESS) had the highest saponin content with 1.2 ± 0.1 mg QSES/g dm and the papaya leaf accusative extract (AqEPL) had the highest alkaloid content (6.413 ± 1 × 10−3 mg AE/g dm) compared with the other extracts. The AqESS had a lower content of secondary metabolites (sterols, alkaloids, and saponins), while AqESL showed no presence of alkaloids and coumarins.

Funder

SAGARPA-CONACyT

Publisher

Hindawi Limited

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3