Affiliation:
1. School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
Abstract
This paper is concerned with a reaction-diffusion equation which describes the dynamics of single bacillus population with free boundary. The local existence and uniqueness of the solution are first obtained by using the contraction mapping theorem. Then we exhibit an energy condition, involving the initial data, under which the solution blows up in finite time. Finally we examine the long time behavior of global solutions; the global fast solution and slow solution are given. Our results show that blowup occurs if the death rate is small and the initial value is large enough. If the initial value is small the solution is global and fast, which decays at an exponential rate while there is a global slow solution provided that the death rate is small and the initial value is suitably large.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献