Dynamic Response Characteristics of the Electric Domain Structure of Ferroelectric Materials to the Surrounding Rock Structure of a Heavy-Duty Railway with a Small-Clearance Crossing Tunnel

Author:

Hao Xiaotian12,Wang Hailong13ORCID

Affiliation:

1. School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang, 050043 Hebei, China

2. School of Urban Construction Engineering, Chongqing Technology and Business Institute, Chongqing 400052, China

3. School of Civil Engineering, Hebei University of Architecture, Zhangjiakou, 075000 Hebei, China

Abstract

At present, the world-wide heavy-haul transportation technology of cargo trains has developed rapidly. Heavy-haul railway transportation has received extensive attention due to its large capacity, high efficiency, and low transportation costs. In order to understand the role that ferroelectric materials can play in the dynamic response of a heavy-duty railway surrounding rock structures in crosstunnels, this article introduces the domain structure of ferroelectric materials, derives the calculation method of the dynamic response of the surrounding rock structure, simulates the dynamic response characteristics through the corresponding formula, and analyzes the changes of the heavy-duty railway in the presence and absence of water. The situation was analyzed. The research results found that the increase of axle load will increase the bending moment of the invert structure. When the axle load is 30 t, the V-class surrounding rock is the most unfavorable working condition and the bending moment value of the invert structure is the largest at this time. When the added value of contact pressure is generally around 6.5 kPa, the railway as a whole can maintain a stable state.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3