Affiliation:
1. Faculty of Science and Technology, Hellenic Open University, 26222 Patras, Greece
2. Department of Telecommunication Systems and Networks, Technological Educational Institute of Messolonghi, 30200 Messolonghi, Greece
Abstract
Mathematical models, such as sets of equations, are used in engineering to represent and analyze the behaviour of physical systems. The conventional notations in formulating engineering models do not clearly provide all the details required in order to fully understand the equations, and, thus, artifacts such as ontologies, which are the building blocks of knowledge representation models, are used to fulfil this gap. Since ontologies are the outcome of an intersubjective agreement among a group of individuals about the same fragment of the objective world, their development and use are questions in debate with regard to their competencies and limitations to univocally conceptualize a domain of interest. This is related to the following question: “What is the criterion for delimiting the specification of the main identifiable entities in order to consistently build the conceptual framework of the domain in question?” This query motivates us to view the Yoneda philosophy as a fundamental concern of understanding the conceptualization phase of each ontology engineering methodology. In this way, we exploit the link between the notion of formal concepts of formal concept analysis and a concluding remark resulting from the Yoneda embedding lemma of category theory in order to establish a formal process.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep First Formal Concept Search;The Scientific World Journal;2014