Vibration Control on Multilayer Cable Moving through the Crossover Zones on Mine Hoist

Author:

Peng Xia12,Gong Xian-sheng1,Liu Jin-jun3

Affiliation:

1. College of Mechanical Engineering, Chongqing University, Chongqing 400044, China

2. Mechanical and Electrical Engineering College, Shihezi University, Shihezi, Xinjiang 832003, China

3. CITIC Heavy Industries Co., Luoyang 471039, China

Abstract

Mine hoist is an important piece of equipment in mine hoist systems, and we achieve deep mine hoist through the multilayer winding, but the cable always undergoes severe shock and vibration during the winding process, and the dynamic load and wear would greatly reduce the lifetime of the cable and cause potential safety hazard. In this paper, we start from the course of crossing over of winding cable, use the methods of differential geometry, mechanics, and mathematical analysis, study the movements of the crossover, and derive the important formula that can reduce the vibration of cable during the course of crossover: the formula about central angle of the crossover arc. The results display that four factors contribute to central angle of the crossover arc, that is, the gap of the rope grooves, friction coefficient of the cable, and diameter of the drum and the cable. The result can provide valuable information for designing multilayer winding mine hoist.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference15 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3