Study on Effect of Perforation Orientation on Hydraulic Fracturing of Shale

Author:

Li Jian1,Wang Dong1,Wang Hongjian12ORCID,Zhao Fei2ORCID,Ma Qingqing1,Qiao Qi1,Yao Zhiyang1

Affiliation:

1. Sinopec Zhongyuan Oilfield Branch, Puyang, 457001 Henan, China

2. North China University of Water Resources and Electric Power, Zhengzhou, 450045 Henan, China

Abstract

The core technology to realize the development of unconventional oil and gas resources is the large-scale volume transformation of shale reservoirs, but volume fracturing is a complex physical and mechanical process, and its mechanism remains to be further studied. In this paper, starting from the current research status of shale volumetric fracturing, the perforation orientation of volumetric fracturing is numerically simulated by using the finite element software. The following conclusions are drawn: ① when the ground stress conditions are equal, with the increase of perforation angle, the maximum principal stress at the front of perforation decreases gradually; that is, when the perforation is along the horizontal minimum principal stress, the maximum principal stress at the front of perforation is the largest, which is most conducive to fracturing of shale reservoirs. ② When the perforation is along the direction of the horizontal minimum principal stress and the horizontal stress difference is zero, the smaller the horizontal stress, the greater the maximum principal stress at the front of the perforation. Therefore, the smaller the horizontal stress, the more conducive to the rupture of shale reservoirs. ③ When the perforation is along the horizontal minimum principal stress, the maximum principal stress at the front of the perforation increases with the increase of the horizontal stress difference. Therefore, the larger the horizontal stress difference, the more favorable for the fracture of shale reservoirs.

Funder

Key Engineering Technology for Exploration and Development of Tight Gas in Northeastern Sichuan Basin of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3