Effect of Intervention of Probiotics in Advance on Treg/Th17 in Premature Mice

Author:

Liu Mengmeng1,Mao Juanjuan1,Zhang Shifa1ORCID

Affiliation:

1. Department of Pediatrics, Yijishan Hospital, Wannan Medical College, Wuhu, 241001 Anhui, China

Abstract

To preliminarily understand the differentiation characteristics of regulatory T cells (Tregs) and Th17 at a different time in preterm mice, the impacts of probiotics on immune function progression, as well as the correlation of probiotics with Tregs and Th17. On embryonic day 18 of gestation, a mouse model of preterm birth was built using mifepristone (RU486). Following IPI of RU486, newborn mice were randomized to probiotics or NS gavage administration. Full-term newborn mice were given the same dose of NS gavage administration. Phenotypic analysis of peripheral immune cell frequency was performed using flow cytometry. Cytokine measurements were phenotyped by enzyme-linked immunosorbent assays. On the 14th and 21st days after birth, the highest and lowest expressions of Foxp3, the Treg transcription factor, were observed in full-term mice and premature mice by NS gavage administration, respectively, while the opposite trend was found in the Th17 transcription factor IL-17.IL-2, IL-6, and TGF-β rose with age but showed different trends among the three groups. IL-2 is the highest in full-term mice and the lowest in premature mice. IL-6 and TGF-β is the lowest in full-term mice and the highest in premature mice. Probiotics are beneficial to the development and maturation of the immune system, which may play a role in regulating the ratio of Treg/Th17. Probiotic preintervention can effectively promote the differentiation of Treg and inhibit the differentiation of Th17 in premature mice. Its mechanism of action may play a biological role by regulating cytokine (IL-2, IL-6, and TGF-β) secretions.

Funder

the mechanism of T cell costimulatory molecules in the cellular immune response of premature mice mediated by intestinal microbiota

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference34 articles.

1. Births: final data for 2018;J. A. Martin;National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System,2019

2. The global epidemiology of preterm birth. Best practice & research;J. P. Vogel;Clinical Obstetrics & Gynaecology,2018

3. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review

4. Analysis of neonatal morbidity and mortality in late-preterm newborn infants

5. CD25 + Natural Regulatory T Cells Are Critical in Limiting Innate and Adaptive Immunity and Resolving Disease following Respiratory Syncytial Virus Infection

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3