A Fault and Capacity Loss Prediction Method of Wind Power Station under Extreme Weather
Author:
Affiliation:
1. Dispatching Control Center of Guangxi Power Grid, Nanning, China
2. Energy Development Research Institute, China Southern Power Grid, Guangzhou, China
3. School of Electric Power, South China University of Technology, Guangzhou, China
Abstract
Funder
Science and Technology Project of Guangxi Power Grid
Publisher
Hindawi Limited
Subject
General Engineering,General Mathematics
Link
http://downloads.hindawi.com/journals/mpe/2023/8763185.pdf
Reference32 articles.
1. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm
2. A novel prediction model for wind power based on improved long short-term memory neural network
3. IEEE Transactions on Power Systems
4. Validation of boundary layer parameterization schemes in the weather research and forecasting model under the aspect of offshore wind energy applications- Part I: Average wind speed and wind shear
5. Combined model with secondary decomposition-model selection and sample selection for multi-step wind power forecasting
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Application of Deep Learning Techniques for the Optimization of Industrial Processes Through the Fusion of Sensory Data;International Journal of Computational Intelligence Systems;2024-07-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3