A Fault and Capacity Loss Prediction Method of Wind Power Station under Extreme Weather

Author:

Li Ling1,Zhuo Yixin1,Meng Wenchuan2,Chen Ze3ORCID,Wei Heng1

Affiliation:

1. Dispatching Control Center of Guangxi Power Grid, Nanning, China

2. Energy Development Research Institute, China Southern Power Grid, Guangzhou, China

3. School of Electric Power, South China University of Technology, Guangzhou, China

Abstract

Extreme weather events can severely affect the operation and power generation of wind farms and threaten the stability and safety of grids with high penetration of renewable energy. Therefore, it is crucial to forecast the failure and capacity loss of wind farms under extreme weather conditions. To this end, considering the disaster-causing mechanism of severe weather and the operational characteristics of wind farms, this paper first uses the density-based spatial clustering of applications with noise algorithm to cluster the units in the wind farm based on the operating characteristics affected by the weather, and uses correlation analysis methods to extract key disaster-causing factors in extreme weather; then proposes a prediction model based on feature-weighted stacking integration. The model adopts the stacking-integrated learning architecture to support multiple learners and performs feature weighting according to the prediction accuracy of each learner in the base learner, thereby improving the training effect of the meta-learner and improving the prediction accuracy of the model. The prediction model is used to predict each wind turbine group based on the extracted key features and to predict the failure and capacity loss of the wind farm. Finally, an example analysis is performed based on actual data from a wind farm, and the results show that the proposed prediction method can effectively predict the operational reliability of wind farms.

Funder

Science and Technology Project of Guangxi Power Grid

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3