Effects of Dietary Fish Meal Replaced by Fish Steak Meal on Growth Performance, Antioxidant Capacity, Intestinal Health and Microflora, Inflammatory Response, and Protein Metabolism of Large Yellow Croaker Larimichthys crocea

Author:

Zhang Dianguang1ORCID,Zheng Yunzong1,Wang Xuexi1ORCID,Wang Dejuan1,Luo Hongjie1,Zhu Wenbo2,Zhang Weini1,Chen Zhengbang2,Shao Jianchun13ORCID

Affiliation:

1. State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Fuzhou Haima Feed Co. Ltd., Fuzhou 350311, China

3. Fuzhou Institute of Oceanography, Fuzhou 350108, China

Abstract

Although fish steak meal (FSM) is a potentially available protein source, its efficiency as a fish meal (FM) substitute remains unclear to date. To this end, this study was carried out to determine the effects of dietary FM replaced by FSM on growth performance, antioxidant capacity, intestinal health and microflora, inflammatory response, and protein metabolism of large yellow croaker. Five isolipidic and isonitrogenous diets were formulated by substituting FM with FSM at levels of 0% (FSM0, control diet), 25% (FSM25), 50% (FSM50), 75% (FSM75), and 100% (FSM100), and were fed to juvenile large yellow croaker for 8 weeks. Compared with the control diet, the replacement of 25% dietary FM with FSM did not markedly alter the weight gain (WG) and specific growth rate (SGR). When the FM substitution level was over 25%, WG and SGR markedly reduced. The intestinal structure observation found that the FSM75 and FSM100 diets markedly decreased villus height, villus width, and muscle thickness of the anterior intestine. The FSM75 and FSM100 diets significantly decreased enzyme activities of amylase (AMS), lipase (LPS), trypsin, catalase (CAT), and total superoxide dismutase (T-SOD) and the total antioxidant capacity (T-AOC), and increased the malondialdehyde (MDA) content in the liver of large yellow croaker. The mRNA expression levels of intestinal barrier and inflammatory response-related genes suggested that the FSM50, FSM75, and FSM100 diets significantly decreased the mRNA abundances of intestinal barrier-related genes and anti-inflammatory response-related genes, and increased the mRNA abundances of proinflammatory gene il-6 in the anterior intestine. The compositions of intestinal microflora displayed that the FSM50, FSM75, and FSM100 diets decreased relative abundances of Firmicutes phylum and increased relative abundances of Proteobacteria phylum. In addition, the results of protein expression levels showed that the phosphorylation level of mammalian target of rapamycin (mTOR) and 4E-binding protein 1 (4E-BP1) in FSM75 and FSM100 groups were markedly reduced. In conclusion, FSM can replace up to 25% dietary FM without compromising the growth performance, intestinal health, and protein metabolism of the large yellow croaker.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3