A Method for Extracting High-Quality Core Data from Edge Computing Nodes

Author:

Chen Yanping12,Zhao Mingdao1ORCID,Xia Hong12ORCID,Jin Xiaodong1,Wang Zhongmin12,Yu Zhong3

Affiliation:

1. School of Computer Science, Xi’an University of Posts and Telecommunications, Xi’an, China

2. Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an, China

3. School of Communications and Information Engineering, Xi’an University of Posts and Telecommunications, Xi’an, China

Abstract

Intelligent factory has the characteristics of wide data sources, high data dimensions, and strong data relevance. Intelligent factories need to make different decisions for different needs, so they need to efficiently analyze these data and explore the inherent laws contained in them. At the same time, the increasing amount of data brings various burdens to the network infrastructure between users and smart devices. For the above needs, this paper proposes a tension-based heterogeneous data fusion model in the edge computing layer, which represents the multisource heterogeneous data in the industrial scene as a tensor model, and uses the incremental decomposition algorithm to extract high-quality core data. The model reduces the data flow between the data center and the central cloud while retaining the core data set. Experiments show that the approximate tensor reconstructed from the tensor with 15% core data can guarantee 90% accuracy.

Funder

Science and Technology Project in Shaanxi Province of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3