Performance Index Based on Predicted Auditory Reaction Time Analysis for the Evaluation of Human-Machine Interface in Flight Control

Author:

Yu Weiwei1ORCID,Jin Dian1ORCID,Yang Xinliang2,Zhao Feng1,Wang Haiyang2,Peng Ran2

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072, China

2. Avionics Research Institute, Chinese Flight Test Establishment, Xi’an, 710089, China

Abstract

With the rapid development of complex equipment, such as airplanes, the appropriate design of the human-machine interface is often upgraded, thus emerged many methods to evaluate whether such an upgrade is effective. Most researches focus on the time accumulation effect of the human state during the interaction to evaluate the interface. However, in the aviation application, the performance of the pilot’s instantaneous reactions also reveals the design efficiency of the interface, since the difficulty level of obtaining the useful information would severely influence the reaction time in some voice command tasks or emergency situations. Besides, there are so many flight scenarios that are impossible to be simulated in experiments or in a laboratory environment. Also, voice commands are too numerous to be traversed simulated. This paper introduced predicted auditory reaction time as an index to evaluate human-machine interface design. The proposed method has two advantages. On the one hand, it effectively measures the pilot’s auditory reaction time based on the eye movement tracking; thus, the data can be taken in flight task scenarios, and the experiment would not cause interference to the subjects. On the other hand, a prediction model is proposed, in which the pilot’s reaction time under more generalized voice command can be estimated based on a small-size sample set.

Funder

111 project

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3