Affiliation:
1. School of Chinese Language and Literature, Anyang Preschool Education College, Henan 45500, China
2. School of Electrical and Information Engineering, University of Sydney, NSW 2006, Australia
3. Henan Institute of Science and Technology, College of Liberal Arts, Xinxiang, Henan 453003, China
Abstract
The partial differential equation learning model is applied to another high-level visual-processing problem: face recognition. A novel feature selection method based on partial differential equation learning model is proposed. The extracted features are invariant to rotation and translation and more robust to illumination changes. In the evaluation of students’ concentration in class, this paper firstly uses the face detection algorithm in face recognition technology to detect the face and intercept the expression data, and calculates the rise rate. Then, the improved model of concentration analysis and evaluation of a college Chinese class is used to recognize facial expression, and the corresponding weight is given to calculate the expression score. Finally, the head-up rate calculated at the same time is multiplied by the expression score as the final concentration score. Through the experiment and analysis of the experimental results in the actual classroom, the corresponding conclusions are drawn and teaching suggestions are provided for teachers. For each face, a large neighborhood set is firstly selected by the
-nearest neighbor method, and then, the sparse representation of sample points in the neighborhood is obtained, which effectively combines the locality of
-nearest neighbor and the robustness of sparse representation. In the sparse preserving nonnegative block alignment algorithm, a discriminant partial optimization model is constructed by using sparse reconstruction coefficients to describe local geometry and weighted distance to describe class separability. The two algorithms obtain good clustering and recognition results in various cases of real and simulated occlusion, which shows the effectiveness and robustness of the algorithm. In order to verify the reliability of the model, this paper verified the model through in-class practice tests, teachers’ questions, and interviews with students and teachers. The results show that the proposed joint evaluation method based on expression and head-up rate has high accuracy and reliability.
Subject
Applied Mathematics,General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献