Using Partial Differential Equation Face Recognition Model to Evaluate Students’ Attention in a College Chinese Classroom

Author:

Miao Xia1,Yu Ziyao2ORCID,Liu Ming3

Affiliation:

1. School of Chinese Language and Literature, Anyang Preschool Education College, Henan 45500, China

2. School of Electrical and Information Engineering, University of Sydney, NSW 2006, Australia

3. Henan Institute of Science and Technology, College of Liberal Arts, Xinxiang, Henan 453003, China

Abstract

The partial differential equation learning model is applied to another high-level visual-processing problem: face recognition. A novel feature selection method based on partial differential equation learning model is proposed. The extracted features are invariant to rotation and translation and more robust to illumination changes. In the evaluation of students’ concentration in class, this paper firstly uses the face detection algorithm in face recognition technology to detect the face and intercept the expression data, and calculates the rise rate. Then, the improved model of concentration analysis and evaluation of a college Chinese class is used to recognize facial expression, and the corresponding weight is given to calculate the expression score. Finally, the head-up rate calculated at the same time is multiplied by the expression score as the final concentration score. Through the experiment and analysis of the experimental results in the actual classroom, the corresponding conclusions are drawn and teaching suggestions are provided for teachers. For each face, a large neighborhood set is firstly selected by the k -nearest neighbor method, and then, the sparse representation of sample points in the neighborhood is obtained, which effectively combines the locality of k -nearest neighbor and the robustness of sparse representation. In the sparse preserving nonnegative block alignment algorithm, a discriminant partial optimization model is constructed by using sparse reconstruction coefficients to describe local geometry and weighted distance to describe class separability. The two algorithms obtain good clustering and recognition results in various cases of real and simulated occlusion, which shows the effectiveness and robustness of the algorithm. In order to verify the reliability of the model, this paper verified the model through in-class practice tests, teachers’ questions, and interviews with students and teachers. The results show that the proposed joint evaluation method based on expression and head-up rate has high accuracy and reliability.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Innovative Model of Higher Education Management and Student Training Mechanism in the Internet Era;Applied Mathematics and Nonlinear Sciences;2023-12-06

2. Developing an AI-based Image Analysis System for Children’s Externalization Disorder;The Journal of Korean Institute of Information Technology;2023-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3