Traffic and Quality Characterization of the H.264/AVC Scalable Video Coding Extension

Author:

Van der Auwera Geert1,David Prasanth T.2,Reisslein Martin2,Karam Lina J.2

Affiliation:

1. Samsung Information Systems America, Digital Media Solutions Lab, 3345 Michelson Drive, Suite 250, Irvine, CA 92612, USA

2. Department of Electrical Engineering, Arizona State University, Goldwater Center MC 5706, AZ 85287-5706, USA

Abstract

The recent scalable video coding (SVC) extension to the H.264/AVC video coding standard has unprecedented compression efficiency while supporting a wide range of scalability modes, including temporal, spatial, and quality (SNR) scalability, as well as combined spatiotemporal SNR scalability. The traffic characteristics, especially the bit rate variabilities, of the individual layer streams critically affect their network transport. We study the SVC traffic statistics, including the bit rate distortion and bit rate variability distortion, with long CIF resolution video sequences and compare them with the corresponding MPEG-4 Part 2 traffic statistics. We consider (i) temporal scalability with three temporal layers, (ii) spatial scalability with a QCIF base layer and a CIF enhancement layer, as well as (iii) quality scalability modes FGS and MGS. We find that the significant improvement in RD efficiency of SVC is accompanied by substantially higher traffic variabilities as compared to the equivalent MPEG-4 Part 2 streams. We find that separately analyzing the traffic of temporal-scalability only encodings gives reasonable estimates of the traffic statistics of the temporal layers embedded in combined spatiotemporal encodings and in the base layer of combined FGS-temporal encodings. Overall, we find that SVC achieves significantly higher compression ratios than MPEG-4 Part 2, but produces unprecedented levels of traffic variability, thus presenting new challenges for the network transport of scalable video.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3