Advanced Glycated apoA-IV Loses Its Ability to Prevent the LPS-Induced Reduction in Cholesterol Efflux-Related Gene Expression in Macrophages

Author:

Shimabukuro Okuda Ligia1ORCID,Tallada Iborra Rodrigo12,Ramos Pinto Paula1,Fabres Machado Ubiratan3ORCID,Corrêa-Giannella Maria Lucia45,Pickford Russell6,Woods Tom7,Brimble Margaret Anne7,Rye Kerry-Anne8,Passarelli Marisa15ORCID

Affiliation:

1. Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil

2. Universidade São Judas Tadeu, São Paulo, Brazil

3. Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil

4. Laboratório de Carboidratos e Radioimunoensaio (LIM 18), Hospital das Clínicas (HCFMUSP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil

5. Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil

6. Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia

7. School of Chemical Sciences, University of Auckland, Auckland, New Zealand

8. Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia

Abstract

We addressed how advanced glycation (AGE) affects the ability of apoA-IV to impair inflammation and restore the expression of genes involved in cholesterol efflux in lipopolysaccharide- (LPS-) treated macrophages. Recombinant human apoA-IV was nonenzymatically glycated by incubation with glycolaldehyde (GAD), incubated with cholesterol-loaded bone marrow-derived macrophages (BMDMs), and then stimulated with LPS prior to measurement of proinflammatory cytokines by ELISA. Genes involved in cholesterol efflux were quantified by RT-qPCR, and cholesterol efflux was measured by liquid scintillation counting. Carboxymethyllysine (CML) and pyrraline (PYR) levels, determined by Liquid Chromatography-Mass Spectrometry (LC-MS/MS), were greater in AGE-modified apoA-IV (AGE-apoA-IV) compared to unmodified-apoA-IV. AGE-apoA-IV inhibited expression of interleukin 6 (Il6), TNF-alpha (Tnf), IL-1 beta (Il1b), toll-like receptor 4 (Tlr4), tumor necrosis factor receptor-associated factor 6 (Traf6), Janus kinase 2/signal transducer and activator of transcription 3 (Jak2/Stat3), nuclear factor kappa B (Nfkb), and AGE receptor 1 (Ddost) as well as IL-6 and TNF-alpha secretion. AGE-apoA-IV alone did not change cholesterol efflux or ABCA-1 levels but was unable to restore the LPS-induced reduction in expression ofAbca1andAbcg1. AGE-apoA-IV inhibited inflammation but lost its ability to counteract the LPS-induced changes in expression of genes involved in macrophage cholesterol efflux that may contribute to atherosclerosis.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3