Affiliation:
1. Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
Abstract
Objective. To quantitatively evaluate the tissue surface adaption of a maxillary complete denture wax pattern produced by CAD and 3DP.Methods. A standard edentulous maxilla plaster cast model was used, for which a wax pattern of complete denture was designed using CAD software developed in our previous study and printed using a 3D wax printer, while another wax pattern was manufactured by the traditional manual method. The cast model and the two wax patterns were scanned in the 3D scanner as “DataModel,” “DataWaxRP,” and “DataWaxManual.” After setting each wax pattern on the plaster cast, the whole model was scanned for registration. After registration, the deviations of tissue surface between “DataModel” and “DataWaxRP” and between “DataModel” and “DataWaxManual” were measured. The data was analyzed by pairedt-test.Results. For both wax patterns produced by the CAD&RP method and the manual method, scanning data of tissue surface and cast surface showed a good fit in the majority. No statistically significant (P>0.05) difference was observed between the CAD&RP method and the manual method.Conclusions. Wax pattern of maxillary complete denture produced by the CAD&3DP method is comparable with traditional manual method in the adaption to the edentulous cast model.
Funder
National Natural Science Foundation of China
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献