A Novel Hybrid Deep Learning Approach to Code Generation Aimed at Mitigating the Real-Time Network Attack in the Mobile Experiment Via GRU-LM and Word2vec

Author:

Cheon Minjong1,Ha Hyodong1,Lee Ook1,Mun Changbae2ORCID

Affiliation:

1. Department of Information Systems, Hanyang University, 222 Wangshimni-ro Seongdong-gu, Seoul 04673, Republic of Korea

2. Department of Electrical, Electronic & Communication Engineering, Hanyang Cyber University, Seoul 04764, Republic of Korea

Abstract

As the use of devices in mobile environments increases, network attacks such as DDoS have a malicious attempt to flood the network's regular traffic to overload the target and surrounding infrastructure. This research proposed machine learning and deep learning approaches to dealing with DDoS attacks, and the results are described as follows. First, this research successfully detected DDoS attacks through an LGBM with a 100% accuracy score. Second, the proposed model (GRU-LM), which consists of a trained Word2vec layer with the Python dataset, is far more effective than the standard GRU model. Since Python is quite similar to English, language model-based GRU yields superior results. Various preprocessing steps were performed through the NLTK package, and each number was assigned to the tokenized one for constructing the GRU language model. The result reveals that the proposed model achieved an accuracy score of 87% for predicting the following words in the source code, while the rest achieved below 30% accuracy. This conclusion is significant because its relatively simple and light structure overcomes tradeoff problems between time and accuracy and is adaptable to the mobile setting. Discovering traffic patterns for the underlying data of DDOS assaults and retrieving them using statistical data analysis is the value of this research. Furthermore, since public cloud application vulnerability assaults are rising due to expanding cloud infrastructure, this finding could be used in such attacks.

Funder

National Research Foundation

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3