Optimized Synthesis of Magnesium Oxide Nanoparticles as Bactericidal Agents

Author:

Imani Mohammad Moslem1,Safaei Mohsen2ORCID

Affiliation:

1. Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran

2. Oral and Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran

Abstract

Increased antibiotic resistance of microorganisms as well as the need to reduce health-care costs necessitates the production of new antimicrobials at lower costs. For this reason, this study was aimed to optimize the synthesis of magnesium oxide nanoparticles with the greatest antibacterial activity. In this study, 9 experiments containing different proportions of the factors (magnesium nitrate, NaOH, and stirring time) effective in the synthesis of magnesium oxide nanoparticles were designed using the Taguchi method. Magnesium oxide nanoparticles were synthesized using the coprecipitation method, and their antibacterial activity was evaluated using colony-forming unit (CFU) and disk diffusion. Morphology, crystalline structure, and size of synthesized nanoparticles were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The optimum conditions (0.2 M magnesium nitrate, 2 M NaOH, and 90 min stirring time) for the synthesis of magnesium oxide nanoparticles with the greatest antibacterial activity were determined using the Taguchi method. The results of colony-forming unit and disk diffusion revealed the optimal antibacterial activity of synthesized nanoparticles against Staphylococcus aureus and Escherichia coli bacteria. The results obtained from FTIR and XRD analyses confirmed the synthesis of nanoparticles with favorable conditions. Also, according to the SEM image, the average size of synthesized nanoparticles was determined to be about 21 nm. According to the results, magnesium oxide nanoparticles can significantly reduce the number of Gram-positive and Gram-negative bacteria and can be used as an appropriate alternative to commonly used antibacterial compounds in order to tackle drug resistance among pathogens.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3