FBW7 Regulates the Autophagy Signal in Mesangial Cells Induced by High Glucose

Author:

Gao Chenlin12ORCID,Fan Fang13,Chen Jiao4,Long Yang1ORCID,Tang Shi1ORCID,Jiang Chunxia1,Xu Yong1ORCID

Affiliation:

1. Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Sichuan 646000, China

2. Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau

3. Department of Endocrinology, The First People’s Hospital of Neijiang, Sichuan 641000, China

4. Department of Endocrinology, The Third Hospital of Mianyang, Sichuan 621000, China

Abstract

Aims. Abnormal regulation of autophagy participates in the development of diabetic nephropathy. mTOR is the most common negative regulator of the autophagy signaling pathway. FBW7 constitutes the SCF (Skp1–Cullin1–F-box protein) recognition subunit of E3 ubiquitin ligase, and mTOR is a substrate of FBW7 that can be modified by ubiquitination and be degraded via proteasomes. In this study, we explored the relationship between FBW7 and autophagy and examined the effects of FBW7 on the occurrence of diabetic nephropathy in vitro.Materials and Methods. We cultured mesangial cells induced by high glucose in vitro and used rapamycin as a specific mTOR inhibitor, performed FBW7 gene overexpression, and detected the expression of autophagy signal and inflammatory factors by WB, ELISA, RT-PCR, and immunofluorescence.Results. High glucose can downregulate the expression of FBW7 and activate mTOR signal, which leads to diminished autophagy in renal mesangial cells, as well as renal inflammatory cytokines and fibrotic factors. RAPA, as a specifically inhibitor of mTOR, can decrease inflammatory cytokines and fibrotic factors by inhibiting mTOR. Moreover, FBW7 gene overexpression can increase autophagy by inhibiting mTOR signal; at the same time, the inflammatory cytokines and fibrotic factors were decreased in mesangial cells.Conclusions. FBW7 was decreased in renal mesangial cells induced by high glucose, and FBW7 gene overexpression can increase autophagy by inhibiting mTOR signaling and ameliorate inflammation and fibrosis.

Funder

Luzhou-Southwest Medical University cooperation project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3