A Comparative Evaluation of the Radiopacity of Contemporary Restorative CAD/CAM Blocks Using Digital Radiography Based on the Impact of Material Composition

Author:

Elhelbawy Nahla Gamal1ORCID,Ghouraba Rehab F2ORCID,Hasaneen Fatma A3ORCID

Affiliation:

1. Dental Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt

2. Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt

3. Fixed Prosthodontics Department, Faculty of Dentistry, Tanta University, Tanta, Egypt

Abstract

Purpose. The main purpose of this study was to assess the radiopacity of contemporary restorative computer-aided design (CAD)/computer-aided manufacturing (CAM) materials and the impact of material composition as measured by energy-dispersive X-ray spectrophotometry (EDX) on radiopacity. Materials and Methods. Ten specimens of six CAD/CAM materials with 1 mm thickness were produced and then digitally radiographed with an aluminum (Al) step-wedge (SW) and 1 mm thick tooth slice. The specimen mean gray values (MGVs) were recorded in pixels and compared to an Al-SW, dentin, and enamel of equal thickness. For the elementary analysis of the composition of the materials, EDX was performed. Results. The recorded MGVs ranged between 21.20 ± 4.94 and 238.5 ± 13.61 pixels. Materials were sorted according to the MGVs descendingly, Prettau, Vita Suprinity, Vita Enamic, Shofu, Pekkton, and BioHPP. Prettau and Vita Suprinity had significantly higher MGV than dentin and 1 mm thick Al. In comparison, Vita Enamic had a slightly higher value than dentin and 1 mm thick Al. Although Pekkton and BioHPP had MGV significantly lower than dentin and 1 mm thick Al, Shofu had a significantly lower value than dentin and nonsignificantly lower than 1 mm thick Al (p < 0.05). According to EDX analysis, the examined materials contained several components in varying quantities of radiopacity. Conclusions. The radiopacity of only three studied materials exceeded the International Organization for Standardization’s minimum standards (ISO).

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3