Self-Excited Vibration Analysis of Gear-Bearing System with Multipoint Mesh and Variable Bearing Dynamic Coefficients

Author:

Zhang Hao1ORCID,Cao Shiheng1ORCID,Li Pengyu1ORCID,Han Qingkai2ORCID

Affiliation:

1. College of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, China

2. Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang, China

Abstract

The gear-bearing system is the most important part of integrally centrifugal compressors. According to statistics, the majority of integrally geared compressor accidents are caused by excessive vibration of the geared rotor. However, its complicated dynamic characteristics and inevitable vibration faults in actual operation present significant challenges throughout the analysis and design stages. In this paper, the coupled self-excited vibration of the gear system characterized by multipoint meshing and oil film bearing supporting is investigated. Firstly, the structure of the gear system in an integrally geared compressor is used as a research object. The modeling approach of meshing excitation, including time-varying mesh stiffness, gear meshing error, and tooth backlash are introduced. However, the variable stiffness and damping coefficient equations of journal bearing and oil film thrust bearing are modeled and utilized to approximate the variable bearing force and simplify the vibration computation under the assumption of Newtonian fluid. Then, a dimensionless modeling method of the gear system considering gyroscopic moment of gear disk, variable meshing force, as well as variable stiffness and damping coefficient is proposed. Based on the dynamic model, the influence of the bearing dynamic coefficients and load on the vibration of the entire gear system is studied. Among which, the vibration displacement and meshing force are examined using frequency-domain and time-domain analysis methods. The results suggest that the flexible support can restrain the system’s nonlinear motion, whilst increasing load on the gear system can improve gear operation stability and reduce load fluctuation.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3