A Hybrid Random Forest and Least Squares Support Vector Machine Model Based on Particle Swarm Optimization Algorithm for Slope Stability Prediction: A Case Study in Sichuan–Tibet Highway, China

Author:

Shu Tao12ORCID,Tao Wei3ORCID,Lu Haotian456ORCID,Li Hao456ORCID,Cao Jingxuan456ORCID

Affiliation:

1. Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education and College of Marine Geosciences, Ocean University of China, Qingdao 266100, China

2. International Center for Submarine Geosciences and Geoengineering Computing, Ocean University of China, Qingdao 266100, China

3. Tibet University, Lhasa 850000, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. Key Laboratory of Mountain Hazards and Earth Surface Process, Chinese Academy of Sciences, Chengdu 610041, China

6. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China

Abstract

Slope stability estimation is an engineering problem that involves several parameters. The problems of low accuracy of the model and blind data preprocessing are commonly existent in slope stability prediction research. To address these problems, 10 quantitative indicators are selected from 135 field cases to improve the accuracy of the model. These indicators were analyzed and visualized to examine their reliabilities after preprocessing. Combined with random forest (RF), particle swarm optimization (PSO), and least squares support vector machine (LSSVM) algorithms, a hybrid prediction model that the RF–PSO–LSSVM model is proposed for identifying slope stability, and its reliability is verified by other prediction models that SVM, logistic regression, decision trees, k-nearest neighbor, naive Bayes, and linear discriminant analysis. Besides, the importance score of each indicator in the prediction of slope stability is discussed by employing the RF algorithm. The research results show that the proposed hybrid model exhibits the best accuracy and superiority in slope stability prediction than other models in this paper, which its values of the best fitness, area under the curve, T-measure, and accuracy are 98.15%, 96.4%, 96.55%, and 95.82%, respectively. The most influential factors affecting slope stability are precipitation and gravity, and the slope type and pore water ratio are identified as the least significant factors in this paper. The results provide a novel approach toward slope stability prediction in the field of geotechnical engineering.

Funder

Guangxi Graduate Education

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3