Refractometric Sensing of Protein in Urine by the Photonic Crystal Fiber Biosensor in THz Regime

Author:

Rahman Md. Moshiur1ORCID,Mou Farhana Akter1ORCID,Bhuiyan Mohammed Imamul Hassan2,Islam Mohammad Rakibul3ORCID

Affiliation:

1. Department of Electrical & Electronic Engineering, University of Asia Pacific, Dhaka, Bangladesh

2. Department of Electrical & Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

3. Department of Electrical & Electronic Engineering, Islamic University of Technology, Gazipur, Dhaka, Bangladesh

Abstract

The presence of albumin in human urine is one of the confirmed early symptoms of kidney dysfunction. A precise urine protein identification process is very important to monitor the kidney’s proper functioning. To identify the presence of albumin in urine, a refractometric protein sensing approach in the photonic crystal fiber (PCF) environment has been introduced here. A PCF geometry with suspended cladding and a circular hollow core has been proposed and investigated in the terahertz (THz) spectrum for protein identification in the liquid samples. Three levels of albumin concentrations in urine (7–125 mg/dl, 250–500 mg/dl, and 1000 mg/dl) are considered to evaluate the sensing performances of the proposed PCF. The numerical investigations are performed on the COMSOL Multiphysics platform where the finite element method (FEM) figures out the numerical outcomes. The performances of the proposed PCF exhibit highly sensitive characteristics for albumin identification in the different albumin concentration levels of urine. The sensitivity shows more than 98.5% for all the tested concentration levels due to the strategic selection of geometrical parameters and proper optimization. Alongside, negligible confinement loss of 10−16 cm−1 is attained at the same operating point of 4.3 THz. Furthermore, dispersion profiles and practical implementation strategies are also investigated and discussed in detail.

Publisher

Hindawi Limited

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Refractometric Sensing of Waterborne Pathogens by Photonic Crystal Fiber Sensor in THz Platform;2023 IEEE International Conference on Telecommunications and Photonics (ICTP);2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3