A Thermofluid Analysis of the Magnetic Nanoparticles Enhanced Heating Effects in Tissues Embedded with Large Blood Vessel during Magnetic Fluid Hyperthermia

Author:

Adhikary Koustov1,Banerjee Moloy1ORCID

Affiliation:

1. Department of Mechanical Engineering, Future Institute of Engineering and Management, Sonarpur Station Road, Kolkata 700150, India

Abstract

The thermal effect developed due to the heating of magnetic nanoparticles (MNPs) in presence of external magnetic field can be precisely controlled by the proper selection of magnetic absorption properties of the MNPs. The present paper deals with the numerical simulation of temperature field developed within or outside the tumor, in the presence of an external alternating magnetic field, using a thermofluidic model developed using ANSYS FLUENT®. A three-layer nonuniform tissue structure with one or two blood vessels surrounding the tumor is considered for the present simulation. The results obtained clearly suggest that the volumetric distribution pattern of MNPs within the tumor has a strong influence on the temperature field developed. The linear pattern of volumetric distribution has a strong effect over the two other types of distribution considered herein. Various other important factors like external magnetic field intensity, frequency, vascular congestion, types of MNP material, and so forth are considered to find the influence on the temperature within the tumor. Results show that proper selection of these parameters has a strong influence on the desired therapeutic temperature range and thus it is of utmost importance from the efficacy point of view of magnetic fluid hyperthermia (MFH).

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3