Modulation of Apoptosis Pathways by Oxidative Stress and Autophagy in β Cells

Author:

Wang Maorong1,Crager Mia1,Pugazhenthi Subbiah12

Affiliation:

1. Section of Endocrinology, Veterans Affairs Medical Center, Denver, CO 80220, USA

2. Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA

Abstract

Human islets isolated for transplantation are exposed to multiple stresses including oxidative stress and hypoxia resulting in significant loss of functional β cell mass. In this study we examined the modulation of apoptosis pathway genes in islets exposed to hydrogen peroxide, peroxynitrite, hypoxia, and cytokines. We observed parallel induction of pro- and antiapoptotic pathways and identified several novel genes including BFAR, CARD8, BNIP3, and CIDE-A. As BNIP3 is an inducer of autophagy, we examined this pathway in MIN6 cells, a mouse beta cell line and in human islets. Culture of MIN6 cells under low serum conditions increased the levels of several proteins in autophagy pathway, including ATG4, Beclin 1, LAMP-2, and UVRAG. Amino acid deprivation led to induction of autophagy in human islets. Preconditioning of islets with inducers of autophagy protected them from hypoxia-induced apoptosis. However, induction of autophagy during hypoxia exacerbated apoptotic cell death. ER stress led to induction of autophagy and apoptosis in β cells. Overexpression of MnSOD, an enzyme that scavenges free radicals, resulted in protection of MIN6 cells from cytokine-induced apoptosis. Ceramide, a mediator of cytokine-induced injury, reduced the active phosphorylated form of Akt and downregulated the promoter activity of the antiapoptotic gene bcl-2. Furthermore, cytokine-stimulated JNK pathway downregulated the bcl-2 promoter activity which was reversed by preincubation with SP600125, a JNK inhibitor. Our findings suggest that β cell apoptosis by multiple stresses in islets isolated for transplantation is the result of orchestrated gene expression in apoptosis pathway.

Funder

American Diabetes Association

Publisher

Hindawi Limited

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3