Rapid and Quantitative Determination of S-Adenosyl-L-Methionine in the Fermentation Process by Surface-Enhanced Raman Scattering

Author:

Ren Hairui12,Chen Zhaoyang12,Zhang Xin12,Zhao Yongmei3,Wang Zheng1ORCID,Wu Zhenglong4,Xu Haijun12ORCID

Affiliation:

1. Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China

2. College of Science, Beijing University of Chemical Technology, Beijing 100029, China

3. Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

4. Analytical and Testing Center, Beijing Normal University, Beijing 100875, China

Abstract

Concentrations of S-Adenosyl-L-Methionine (SAM) in aqueous solution and fermentation liquids were quantitatively determined by surface-enhanced Raman scattering (SERS) and verified by high-pressure liquid chromatography (HPLC). The Ag nanoparticle/silicon nanowire array substrate was fabricated and employed as an active SERS substrate to indirectly measure the SAM concentration. The linear relationship between the integrated intensity of peak centered at ~2920 cm−1in SERS spectra and the SAM concentration was established, and the limit of detections of SAM concentrations was analyzed to be ~0.1 g/L. The concentration of SAM in real solution could be predicted by the linear relationship and verified by the HPLC detection method. The relative deviations (δ) of the predicted SAM concentration are less than 13% and the correlation coefficient is 0.9998. Rolling-Circle Filter was utilized to subtract fluorescence background and the optimal results were obtained when the radius of the analyzing circle is 650 cm−1.

Funder

National 973 Basic Research Program of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3