Deformation and Acoustic Emission Characteristics of Cracked Granite during Creep

Author:

Wang Chunping12ORCID,Xie Jingli1ORCID,Liu Jian1

Affiliation:

1. CNNC Key Laboratory on Geological Disposal of High-level Radioactive Waste, Beijing Research Institute of Uranium Geology, Beijing, China

2. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China

Abstract

A series of multistage creep tests under different confining pressures with acoustic emission monitoring have been performed to investigate the deformation characteristic and failure process of cracked granite during creep. The critical axial strain of cracked sample showed an increasing tendency with the increase of confining pressure. In contrast, critical lateral strain experienced a process of descending first at low confinement and then remaining nearly constant at high confinement. Compared with loading-cracked specimen, smaller critical axial strain, greater critical lateral strain, and higher lateral creep strain rate were found for unloading-cracked specimen. Based on the spatial and temporal distribution of acoustic emission events, the cracking process during creep was analysed. The AE events with high energy are mainly concentrated at the final fracture area of the specimen. The higher the confining pressure, the more the AE events with low energy. Compared with the loading-cracked specimen, the percentage of AE events with high energy is relatively small for the unloading-cracked specimen.

Funder

China Atomic Energy Authority

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3